
SPACE STATION SOFWARE RELIABILITY ANALYSIS BASED ON L 73 
20f FAILURES OBSERVED DURING TESTING AT THE 

MULTISYSTEM INTEGRATION FACILITY 
- '  

\ / i  
Final Report 

NASNAS E E S u mmer Facu Ity Fellowship Program- 1 987 

Johnson Space Center 

Prepared by: 

Academic Rank: 

University Department: 

NASNJSC 

Directorate: 

Division : 

Branch: 

JSC Colleague: 

Date: 

Contract Number: 

Tak Chai Tamayo 

Assistant Professor 

University of Houston-UP 
Department of Industrial 
Engineering 
Houston, Texas 77004 

Mission Support 

Spacecraft Software Division 

Systems Development 

Richard E. Coblentz 

August 14J 987 

NGT 44-001 -800 

28-1 



ABSTRACT 

Quality of software not only is vital to the success operation of 

the Space Station, it is also an important factor in establishing testing 

requirements, time needed for software verification and integration as 

well as launching schedules for the Space Station. Defense of 

management decisions can be greatly strengthened by combining 

engineering judgements with statistical analysis. Unlike hardware, 

software has the characteristics of no wearout and costly redunduncies, 

thus making traditional statistical analysis not suitable in evaluating 

reliability of software. 

A statistical model was developed to provide a representation of 

the number as well as types of failures occur during software testing 

and verification. From this model, quantitative measure of software 

reliability based on failure history during testing are derived. Criteria 

to terminate testing based on reliability objectives and methods to 

estimate the expected number of fixings required are also presented 

here. 
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INTRODUCTION 

The purpose of Multisystem Integration Facility (MSIF) is to 

provide a facility on which information systems for the Space Station, 

which are produced by different developers, may be integrated, tested, 

verified, certified for flight, and packaged for launch. The MSlF concept 

was motivated by the facts that Space Station softwares are being 

developed by multiple developers at different sites. The systems are 

highly distributed and will be built up in phases, over a number of 

launches. Several upgrades and changes will take place over the life of 

the Space Station. MSlF will be required to first perform testing using 

computer models of all the Space Station systems. As real systems are 

delivered at MSIF, testing will be performed using combinations of 

models and real systems. The final test will be one in which all systems 

are actual flight-ready versions. Since the correction of errors found 

during multisystem integration is the responsibility of the developer, 

control over delivered systems may be returned to the developer for the 

correction of errors, and then back to the MSlF to continue testing. 

Software is an important element of the Space Station, and is 

vital to its successful operation. Failure of softwares can be 

life-threatening in some cases. In addition, the quality of software can 

greatly affect the amount of fixings required during the testing, 

integration or verification process, thus making it possible to cause 

delays in launching of the Space Station, which is scheduled to begin in 

January, 1994. Consequently there is an urgent need to search for a 

quantitative measure of the reliability of the software, and to develop 

methods of combining reliability of software and hardware elements of 
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the Space Station to establish the system reliability of the Station. The 

concept of software reliability differs from that of hardware reliability 

in that failure is not due to a "wearing out" process. Software failures 

are in fact errors which, owing to hte complexity of a computer program, 

do not become evident until the combination of conditions bring the error 

to light. Unlike the hardware bathtub curve, there is no wearout 

characteristics, but only a continuing burn-in. Once a software error is 

identified and properly fixed, it is in general, fixed for all time. 

However, the large number of possible paths and its inputs in a space 

station software makes complete testing of the software generally 

impossible. 

Several approaches are currently available for testing of a 

software: path testing, functional testing and formal proofs of 

correctness. A complete functional test would verify that the correct 

output is produced for each input . It would consist of subjecting the 

program to all possible input streams. However, a ten-character string 

has 280 possible input streams and corresponding outputs. So complete 

functional testing in this sense is clearly impractical. In path testing, 

one would design a sufficient number of test cases to assume that every 

path through the routine is exercised at least once. But most often, even 

the number of paths through a small routine can be astronomical to 

I 

I permit all paths to be tested. As for formal proofs of correctness, each 

~ 

program statement is examined and used in a step of an inductive proof 

that the routine will produce the correct output as stated by formal 

mathematics. The practical issue here is that such proofs are very 

expensive and have been applied only to numerical routines. Not only are 

all known approaches to absolute demonstrations of error-free 
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impractical, they are impossible as well. 

Because exhaustively tested and error-free software are not 

made possible by current acceptance procedures, purchaser of a software 

product is provided with no quantitative information on which to base an 

acceptance decision and is thus forced to make these decisions based 

mostly on intuition and his own experience in similiar situation. 

Therefore our goal should be to provide sufficient testing to assure that 

the probability of failure due to hibernating errors is sufficiently low to 

be acceptable. It is expected the level of testing required will depend on 

the system/component, criticality and complexity, state of development 

and cost and usage of the system. 

Software reliability is defined here as the probability that a 

given software operates for some time period without software error 

detectable by executing the codes on the machine for which it was 

designed, assuming that it is used within design limits. Such being the 

case, test cases should be designed to cover the operating scenarios of 

the information system designed. When softwares are delivered to MSIF, 

they have already been successfully tested on the flig ht-compatible 

hardware. MSlF testing will start using models of other systems, and 

progress to using delivered versions of the other systems. Current 

concepts of MSlF requires if errors are detected, the software be 

returned to its developer with descrepancy reports of the errors found. 

After proper fixing, the software is returned to MSlF for retesting. In 

general, while fixing the errors found, new errors are also introduced. A 

portion of the old errors persisted, and will reoccur during the retesting. 

This process is repeated until a decision is made about the quality of the 

software based on the testing results. In the past it normally means the 
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software ssf u II] 
The goals of this paper are: 

perates succ on all test cases it was subjected to. 

1. 

2. 

3. 

4. 

5. 

Develop a statistical model to describe the failures behaviour 

during testing. 

Obtain a statistical measure of software reliability, based on 

failure history observed during testing. 

According to prespecified software reliability and failure 

history, establish criteria as to when testing of software can 

stop. 

Combining reliability of software and hardware elements of the 

Space Station to establish "system" reliability of the Station. 

Specified types of error records to be maintained during testing 

so that they can be used for later statistical analysis. 

These goals are motivated by the fact that in the Space Shuttle 

program, the extent and degree of testings performed on space softwares 

have generally been made based on management judements. Verification 

requirements are to be determined individually for each hardwarel 

software product, based on criticality and risk associated with the 

hardwarelsoftware when it is integrated into the operational 

enviroment. 
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DESCRIPTION OF THE MODEL 

The model of interested here is the failure behavior of a 

software after it is delivered to MSlF for testing and integration. A 

number of test cases designed to cover a selection of the enviroment in 

which the software will be used are run and errors occured during 

execution are recorded in descrepancy reports. The software is then 

returned to its developer for fixing. After proper fixing, it is returned to 

MSlF for retesting, where a portion of the old errors may reoccur and 

some new errors are detected. 

sumDtions of the M U  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

All errors are caused only by the faults in the software, thus all 

others involved in testing are assumed to possess high fidelity. 

All errors occure during testing are observed. 

The number of new errors found are statistically independent of 

the total number of errors found during the previous trial. 

The failure rate of new errors for each trial is dependent of the 

number of fixings already performed on the software. 

The number of test cases run during each trial remains relatively 

constant. 

All persisted errors are statistically independent of each other. 

The number of new errors observed during each trial follows a 

Poisson process. 

Although it is possible that failure rate of new errors found 
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during each trial can be directly proportional, constant, or inversely 

proportional to the number of fixings performed, historical information 

gathered during the development of the Shuttle Orbiter primary flight 

software indicates a decreasing trend. 

During each trial, the total number of errors detected consists of 

two independent entities: new and persisted errors. 

Let 

Nk = total number of errors detected during kth trial 

xk = number of new errors detected during kth trial, after (k-I) 

fixings by the developer 

Rk = number of persisting errors from the previous trial. 

Thus, the total number of errors detected at each trial is the sum of the 

number of new errors introduced by the last fixing and the number of 

errors persisted from the last trial, i.e. 

Nk = xk + Rk. 

vsis of the Model 

Let 

pk = probability of an error found in kth trial to persist in (k+l)th 

trial 

If the number of errors found during kth trial is nk, then the 

probabaility of r errors persist in (k+l)th trial after fixing is: 
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r = 0,1,2, . . . , nk 

where 

C(nk,r) = the number of unordered samples of size r taken from nk. 

This is the conditional probability density of persisting errors based on 

the total number of errors found in previous trial and it follows a 

binomial distribution B(nk, pk). As defined in the model, the total 

number of errors in the next trial is determined by the sum of two 

independent random variables, namely the numbers of new and persisted 

errors. This implies future errors is dependent of the number of errors 

found at present through persisted errors. Therefore the conditional 

probability density function of future errors based on present condition 

Is: 

where 

g(xk+l) is the probability density function of the number of new 

errors found during (k+l)th trial, and B'g represents the convolution of 

the two random variables, Rk+l and xk+l. 

By the assumption that xk+l follows a poisson distribution with mean 

hk+l, the convolution of a binomial and poisson distributions is given as 

follows: 

28-9 



min(n,nk) 

j = O  

If pk is relatively small, then the density function of B(nk, pk) can be 

approximated with a Poisson distribution, and the convolution of Rk+l 

and xk+l is a Poisson process given as: 

In the case where n = 0, this conditional density function 

estimates the software reliability based on number of failures observed. 

. .  . .  riteria for Termination of Testla: 

Extent of testing for softwares shall be conducted at a level 

consistant with its criticality level associated with the Space Station. 

Softwares that are highly critical to the successful operation of the 

Station will require high reliability, thus more detail testing than the 

others. Current concept documents of MSlF states thaat the degree to 

which a system is tested at MSlF depends on its risk category and how 

tightly coupled it is with the Data Management Systems (DMS). Suppose 

a particular software is required to have a minimum reliability level, 
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say REL, during the mission period T. In particular, REL is defined as the 

probability no error will occur during the mission period, and (1-REL) is 

the probability any error is detected during T. Hence the following 

inequality must be satisfied in order to meet the required reliability 

level REL. 

Using the approximation of a Poisson process, it is thus suffucient to 

solve for nk such that: 
* 

or by taking logorithm on both sides, 

Equation (1) gives the set (k, n;) which yields the required reliability 

level REL. Since nk 2 0, it implies that the earliest time testing may 

terminate can be obtained by setting nk = 0 and then solve for a 
* 

smallest k that satisfies: 

hk+l - In(REL). 

Let m be the expected number of fixings required before a software 

passes the testing and 
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m = E[k] 

00 

- - c k Prob(testing is terminated after k fixings) 

k = O  

00 

k = O  

which can be obtained by applying properties of conditional probabilities 

as follows: 

00 

00 

and 

Prob(Nj = nj) = c Prob(Nj = nj I Njel= nj-l) Prob(Nj-l = nj-l) , . 
nj-l =O 

for j = 1, 2,. . . , nkk-l. 
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ExamDla 
Suppose from historical data, one will observe xk new errors 

after k fixings and xk follows a Poisson process with mean hk = 

0.5exp(-k) per KSLOC1 per hour in execution time. Ten percent of the 

errors found during a trial are corrected by the developer after one 

fixing. One hundred test cases which takes a total of 100 hours to 

execute are designed to test the Atmosphere Control and Supply (ACS) 

subsystem software, which provides total and partial pressure control 

within the pressurized habitation module in the Space Station. Such 

system consists of 10 KSLOC and is classified as criticality level 1 

which requires a minimum reliability level of 0.999 during its useful life 

cycle of 20 years, Le. the probability of no error being detected during 

the next 20 years of operation is 0.999. 

By adjusting the unit of measurement, the mean number of 

failures for the ACS software during each trial period which lasts 100 

hours is: 

hk = 50exp(-k) 

The number of hours in 20 years = 175,200 and is equivalent to 1,752 

trial periods. 

To achieve reliability of 0.999 during the next 20 years, the software 

should achieve a minimum reliability level REL* during the test period of 

100 hours where 

(REL*)1752 = 0.999 

or REL = 0.9999994 

KSLOC = thousand source line of codes 
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The minimum number of fixlligs needed for he ACS software based on 

the required relaibility level is given in Table 1. It shows that for 

required reliability of 0.9999994, the earliest time testing can 

terminate is after the 18th fixing when no error is detected during that 

trial. An estimate of the software reliability during the next period 

based on selected number of errors observed during testing are given in 

Table 2. 

Table 1. The Minimum Number of Fixings Needed for the ACS 

Software Based on Required Reliability Level 

tv I eve1 (RFI 1 tnimum Number of Fixinas (k) . .  
- . .  

0.90 6 

0.95 6 

0.99 8 

0.999 10 

0.9999 

0.99999 

0.999999 

0.9999997 

0.9999999 

13 

15 

17 

18 

19 
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Table 2. Software Reliability Based on Number of Errors Observed 

Trial (k) # Errors Observed During Testing (Nk) Reliability 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
9 

10 
10 
10 
11 
1 1  
1 1  
12 
12 
12 
13 
13 
13 
14 
15 
16 
16 
17 
18 
19 

c- 3 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 
0 
0 
0 
1 
0 
0 
0 
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0.001 151 4 
0.001 041 8 
0.0829635 
0.0750685 
0.4002035 
0.3621 191 
0.71 39821 
0.6460377 
0.8834349 
0.7993650 
0.9554297 
0.8645085 
0.9833667 
0.8897870 
0.9938485 
0.899271 3 
0.9977325 
0.9027858 
0.81 68743 
0.9991 652 
0.9040821 
0.81 80473 
0.9996928 
0.9045595 
0.81 84792 
0.9998869 
0.9047351 
0.81 86382 
0.9999584 
0.9047998 
0.81 86967 
0.9999847 
0.9999943 
0.9999979 
0.9048355 
0.9999992 
0.9999997 
0.9999999 



Collection of M a  
Certain data concerning the software will have to be collected 

in order to verify the statistical model described here. This includes: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

The frequency of persisted errors from previous trial and new 

errors that are introduced during the fixing effort. 

The number of fixings performed by the developer when these 

errors were found. 

Criticality level of errors found at each trial. 

A function which relates the failure rates of new errors at each 

trial with the number of fixings performed. 

Probability distributions of the number of new errors detected at 

each trial. 

Probability an identified error is corrected by the developer 

through one fixing. 

Number of test cases applied on each trial. 

Size of the software. 

The function which relates failure rates of new errors with the 

number of fixings can be obtained by applying regression analysis on the 

frequency of failures obtained through historical data. Since a perfect 

fit of n experimental data may require a polynomial of degree (n-l), 

techniques of selecting a "sufficient" function may be needed to reduce 

this polynomial to an acceptable form. If distributions of failures are 

unknown, a Chi-square goodness-of-fit test can be employed to test for 

pattern of distributions. Data from the Space Shuttle softwares were 

not applied to this model because they made no distinction between 

persisted and new errors. However, the data did support a decreasing 
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trend with the number of fixings. When available, the amount of time and 

cost associated with each fixing can be combined with the amount of 

computer execution times required during testing to establish testing 

schedules and total cost of softwar testing so that launch schedules and 

budgets are met. Factor like degree of interaction with other systems is 

important in determining the reliability of a distributed system, and 

therefore should also be included in the data when available. 

. .. eliaility 

The Challenger accident shows that in case of accidents, defense 

of management decisions can be greatly strengthened if they are made 

based on combination of statistical analysis and engineering judgements. 

In the context of manned Space Station, it is important to explore 

reliability theory to assess the risk of extended human presence in 

space. Most Space Station systems are complex systems composed of 

hardware and software, both of which are required to be in operational 

states in order for the system to perform its designed function. It is 

thus necessary to include software as part of the components which 

form the reliability network of the Space Station. It has been shown 

that a system with subsystems and components in series will have 

reliability less than that of its weakest link. Suppose the ACS 

subsystem hardware in the habitation module has failure times which 

follows an exponential distribution with MTBF = 100 years and 

reliability of its software which interacts with the Data Management 

Systems (DMS) is 0.999 during the next 20 years. Then the ACS 
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subsystem will have reliability less than those of the hardware, 

software and DMS alone. In particular, if no scheduled maintenance work 

are to be performed during the next 20 years and the DMS has reliability 

of 0.995, then the reliability of the ACS subsystem is: 

Reliability = exp(-20/100) x 0.999 x 0.995 

= 0.81 38224. 

This demonstrates an important fact that the reliability of a complex 

system decreases rapidly as more subsystems are added to the system 

design. For instance, a system which requires five components in series 

configuration will have reliability of 0.77 if each of the component was 

tested to have reliability of 0.95. Thus in order to achieve the goal of a 

highly reliable system, efforts should be made to obtain highly reliable 

hardware as well as software through either engineering design or 
testing. While traditional methods of redunduncy works well with 

hardware, it can be quite costly for complex software, as redunduncy in 

software normally means an independent development of the computer 

program. It is this unique characteristic of software which makes 

software testing an effective method to maintain software quality. 
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CONCLUSION 

The lack of quantitative method to evaluate reliability of 

software delivered by the developer motivated the statistical model 

designed here. The unique characteristics of no wearout and costly 

redunduncy has made software testing an only way besides software 

design to maintain software quality. The model developed here 

represents the failure pattern during software testing, which includes 

new errors introduced by the fixing and persisted errors from previous 

trial. Quantitative approaches were derived to predict the software 

reliability and criteria to terminate testing based on failure history. 

These results can be applied to enhance the safety of the Space Station 

and to avoid delays in launch schedules due to delay in the software 

verification process. 
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